Selasa, 24 April 2018

STRUKTUR ATOM


STRUKTUR ATOM
Atas dasar teori atom Dalton, kita dapat mendefinisikan atom sebagai satuan dasar dari sebuah atom elemen yang dapat masuk ke dalam kombinasi kimia. Dalton membayangkan atom itu keduanya sangat kecil dan tak terpisahkan. Namun, serangkaian investigasi yang dimulai pada tahun 1850-an dan diperluas ke abad ke-20 dengan jelas menunjukkan bahwa atom sebenarnya memiliki struktur internal; artinya, mereka terdiri dari partikel yang lebih kecil, yang disebut partikel subatom. Penelitian ini mengarah pada penemuan tiga seperti itu partikel — elektron, proton, dan neutron.
Atom terdiri dari proton, neutron dan elektron. Proton dan neutron berada di dalam inti atom. Sedangkan elektron terus berputar mengelilingi inti atom karena muatan listriknya. semua elektron bermuatan negatif (-) dan semua proton bermuatan positif (+) . sementara itu neutron bermuatan netral. Elektron bermuatan yang bermuatan negatif (-) ditarik oleh proton yang bermuatan positif (+) pada inti atom.
Dalam hal ini, semua atom di alam semesta akan terjadi bermuatan positif (+) karena ada kelebihan muatan listrik positif (+) di dalam proton.  Akibatnya, semua atom akan saling bertolak satu sama lain.
ELEKTRON
Setelah John Dalton (1766-1844) pada tahun 1803 mengemukakan teori atom yang pertama kali, maka tidak lama setelah itu dua orang ilmuwan yaitu Sir Humphry Davy (1778-1829) dan muridnya Michael Faraday (1791-1867), menemukan metode elektrolisis, yaitu cara menguraikan senyawa menjadi unsur-unsurnya dengan bantuan arus listrik. Dengan metode baru itulah akhirnya mereka menemukan bahwa atom mengandung muatan listrik.
Sejak pertengahan abad ke-19, para ilmuwan banyak meneliti daya hantar listrik dari gas-gas pada tekanan rendah. Tabung lampu gas pertama kali dirancang oleh Heinrich Geissler (1829-1879) dari Jerman pada tahun 1854. Rekannya, Julius Plucker (1801-1868), membuat eksperimen sebagai berikut. Dua pelat logam ditempatkan pada masing-masing tabung Geissler yang divakumkan, lalu tabung gelas itu diisi dengan gas pada tekanan rendah. Salah satu pelat logam (disebut anode) membawa muatan positif, dan pelat yang satu lagi (disebut katode) membawa muatan negatif. Ketika muatan listrik bertegangan tinggi dialirkan melalui gas dalam tabung, muncullah nyala berupa sinar dari katode ke anode. Sinar yang dihasilkan ini disebut sinar katode. Sifat sinar katode, antara lain :

  1. merambat tegak lurus dari permukaan katode menuju anode;
  2. merupakan radiasi partikel sehingga terbukti dapat memutar baling-baling;
  3. bermuatan listrik negatif sehingga dibelokkan ke kutub listrik positif;
  4. dapat memendarkan berbagai jenis zat, termasuk gelas.
Plucker ternyata kurang teliti dalam pengamatannya dan menganggap sinar tersebut hanyalah cahaya listrik biasa. Pada tahun 1875, William Crookes (1832-1919) dari Inggris, mengulangi eksperimen Plucker tersebut dengan lebih teliti dan mengungkapkan bahwa sinar katode merupakan kumpulan partikel-partikel yang saat itu belum dikenal.
Hasil-hasil eksperimen Crookes dapat dirangkum sebagai berikut.
  1. Partikel sinar katode bermuatan negatif sebab tertarik oleh pelat yang bermuatan positif.
  2. Partikel sinar katode mempunyai massa sebab mampu memutar baling-baling dalam tabung.
  3. Partikel sinar katode dimiliki oleh semua materi sebab semua bahan yang digunakan (padat, cair, dan gas) menghasilkan sinar katode yang sama.
Partikel sinar katode itu dinamai “elektron” oleh George Johnstone Stoney (1817 – 1895) pada tahun 1891.Pada masa itu para ilmuwan masih diliputi kebingungan dan ketidaktahuan serta ketidakpercayaan bahwa setiap materi memiliki elektron karena mereka masih percaya bahwa atom adalah partikel terkecil penyusun suatu materi.
Pada tahun 1897, Joseph John Thompson (1856 – 1940) dari Inggris melalui serangkaian eksperimennya berhasil mendeteksi atau menemukan elektron yang dimaksud Stoney. Thompson membuktikan bahwa elektron merupakan partikel penyusun atom, bahkan Thompson mampu menghitung perbandingan muatan terhadap massa elektron (e/m), yaitu 1,759 x 108 coulomb/gram.
Kemudian pada tahun 1908, Robert Andrew Millikan (1868-1953) dari Universitas Chicago menemukan harga muatan elektron, yaitu 1,602 x 10-19 coulomb. Dengan demikian massa sebuah elektron dapat dihitung.

Massa satu elektron = e/(e/m) = (1,602 x 10-19) / (1,759 x 108) = 9,11 × 10–28 gram
Percobaan tabung sinar katode pertama kali dilakukan oleh William Crookes (1875). Hasil eksperimennya yaitu ditemukannya seberkas sinar yang muncul dari arah katode menuju ke anode yang disebut sinar katode.
George Johnstone Stoney (1891) yang mengusulkan nama sinar katode disebut "elektron". Kelemahan dari Stoney tidak dapat menjelaskan pengaruh elektron terhadap perbedaan sifat antara atom suatu unsur dengan atom dalam unsur lainnya. Antoine Henri Becquerel (1896) menentukan sinar yang dipancarkan dari unsur-unsur radioaktif yang sifatnya mirip dengan elektron.
Joseph John Thomson (1897) melanjutkan eksperimen William Crookes yaitu pengaruh medan listrik dan medan magnet dalam tabung sinar katode.

Pembelokan sinar katode oleh medan listrik. [1]
Keterangan :
C = katode
A = anode
E = lempeng kondensor bermuatan listrik
F = layar yang dapat berpendar (berfluoresensi)

Hasil percobaan J.J. Thomson menunjukkan bahwa sinar katode dapat dibelokkan ke arah kutub positif medan listrik. Hal ini membuktikan terdapat partikel bermuatan negatif dalam suatu atom. Besarnya muatan dalam elektron ditemukan oleh Robert Andrew Milikan (1908) melalui percobaan tetes minyak Milikan seperti gambar berikut.

Diagram percobaan tetes minyak Milikan. [1]
Minyak disemprotkan ke dalam tabung yang bermuatan listrik. Akibat gaya tarik gravitasi akan mengendapkan tetesan minyak yang turun. Apabila tetesan minyak diberi muatan negatif maka akan tertarik ke kutub positif medan listrik. Dari hasil percobaan Milikan dan Thomson diperoleh muatan elektron –1 dan massa elektron 0, sehingga elektron dapat dilambangkan (0-1e).
RADIOAKTIVITAS
Pada tahun 1895, fisikawan Jerman Wilhelm Röntgen † memperhatikan bahwa sinar katoda yang ditimbulkan kaca dan logam untuk memancarkan sinar yang sangat tidak biasa. Radiasi yang sangat energik ini menembus materi, piring fotografi tertutup gelap, dan menyebabkan berbagai zat untuk fluoresce. Karena sinar ini tidak dapat dibelokkan oleh magnet, mereka tidak bisa mengandung partikel bermuatan seperti sinar katoda. Röntgen menyebut mereka dengan sinar X karena sifat mereka tidak diketahui.
Sinar katode terdiri atas arus elektron. Arus diproduksi menggunakan voltase tinggi antara electrode yang ditempatkan pada masing-masing ujung tabung gelas yang udaranya hampir di kosongkan seluruhnya.
Sinar katode ini tidak khusus merembes dan sudah distop oleh beberapa sentimeter udara. Pada peristiwa ini Rontgen sudah sepenuhnya menutup tabung sinar katode dengan kertas hitam tebal sehingga biarpun listrik dinyalakan, tak ada cahaya yang bisa terlihat dari tabung.Akan tetapi, takkala Rontgen menyalakan arus listrik di dalam tabung sinar katode, dia terperanjat melihat bahwa cahaya mulai memijar pada layar yang terletak dekat bangku seperti distimulir oleh sinar lampu.Dia padamkan tabung dan layar (yang terbungkus barium platino cyanide).Lalu cahaya berhenti memijar karena tabung sinar katode sepenuhnya tertutup. Rontgen segera sadar bahwa suatu bentuk radiasi yang tak kelihatan mesti datang dari tabung ketika cahaya listrik dinyalakan.Karena ini merupakan hal yang misterius, dia sebut radiasi yang tampak itu “sinar-X” yang merupakan lambang matematik biasa untuk sesuatu yang tidak diketahui.Tergiur oleh penemuannya yang kebetulan itu, Rontgen menyisihkan penyelidikan-penyelidikan lainnya dan ia pusatkan perhatian terhadap penelaahan hal lain yang terkandung dalam “Sinar-X”. Sesudah beberapa minggu bekerja keras, dia menemukan bukti-bukti lain sebagai berikut:
1.      Sinar X bisa membuat sinar pelbagai benda kimia selain brium platinocyanide.
2.      Sinar X dapat menerobos lewat berbagai benda yang tak tembus oleh cahaya biasa. Rontgen menemukan bahwa sinar-X dapat menembus dagingnya, tetapi berhenti pada tulangnya. Dengan jalan meletakkan tangannya antara tabung sinar cathode dan layar yang bersinar, Rontgen dapat melihat di layar bayangan dari tulang tangannya.
3.      Sinar X berjalan menurut garis lurus; tidak seperti partikel bermuatan listrik, sinar X tidak terbelokkan oleh bidang magnet.
Bulan Desember 1895 Rontgen menulis kertas kerja pertamanya mengenai sinar-X. Laporannya dalam waktu singkat menggugah perhatian dan kegemparan. Dalam tempo beberapa bulan, banyak ilmuwan melakukan penyelidikan sinar-X dan dalam tempo setahun sekitar 1000 kertas kerja diterbitkan tentang masalah itu.
Salah seorang ilmuwan yang penyelidikannya langsung pada hasil penemuan Rontgen adalah Antoine Henry Becquerel.Orang ini meskipun maksud utamanya menyelidiki sinar-X, justru menemukan fenomena penting tentang radioaktivitas.Secara umum sinar-X bekerja bila energi tinggj elektron mengenai sasaran.Sinar-X itu sendiri tidak mengandung elektron.Akan tetapi, gelombang yang dapat terlihat mata (yaitu gelombang cahaya), kecuali panjang gelombang sinar-X jauh lebih pendek.

PROTON
Jika massa elektron 0 berarti suatu partikel tidak mempunyai massa. Namun pada kenyataannya partikel materi mempunyai massa yang dapat diukur dan atom bersifat atom itu netral.
Keberadaan partikel bermuatan positif yang dikandung oleh atom diisyaratkan oleh Eugen Goldstein (1850-1930) pada tahun 1886. Dengan ditemukannya elektron, para ilmuwan semakin yakin bahwa dalam atom pasti ada partikel bermuatan positif untuk mengimbangi muatan negatif dari elektron. Selain itu, jika seandainya partikel penyusun atom hanya elektron-elektron, maka jumlah massa elektron terlalu kecil dibandingkan terhadap massa sebutir atom.

Eugene Goldstein (1886) melakukan eksperimen dari tabung gas yang memiliki katode, yang diberi lubang-lubang dan diberi muatan listrik. Selanjutnya, dan gas yang berada di belakang lempeng katode menjadi berpijar. Peristiwa tersebut menunjukkan adanya radiasi yang berasal dari anode yang menerobos lubang pada lempeng katode. Sinar ini disebut sinar anode atau sinar positif. Sifat sinar anode, antara lain :
  1. Merupakan radiasi partikel sehingga dapat memutar baling-baling;
  2. Dalam medan listrik/magnet, dibelokkan ke kutub negatif, jadi merupakan radiasi bermuatan positif;
  3. Partikel sinar anode bergantung pada jenis gas dalam tabung.


Percobaan Goldstein untuk mempelajari partikel positif.

Hasil eksperimen tersebut membuktikan bahwa pada saat terbentuk elektron yang menuju anode, terbentuk pula sinar positif yang menuju arah berlawanan melewati lubang pada katode. Setelah berbagai gas dicoba dalam tabung ini, ternyata gas hidrogen lah yang menghasilkan sinar muatan positif yang paling kecil baik massa maupun muatannya, sehingga partikel ini disebut dengan proton. Massa proton = 1 sma (satuan massa atom) dan muatan proton = +1.
Keberadaan partikel penyusun atom yang bermuatan positif itu semakin terbukti ketika Ernest Rutherford (1871-1937), orang Selandia Baru yang pindah ke Inggris, pada tahun 1906, bersama dua orang asistennya, yaitu Hans Geiger dan Ernest Marsden, melakukan serangkaian percobaan untuk mengetahui kedudukan partikel-partikel di dalam atom. Percobaan mereka dikenal dengan hamburan sinar alfa terhadap lempeng tipis emas. Mereka berhasil menghitung bahwa massa partikel bermuatan positif itu kira-kira 1.837 kali massa elektron. Kini kita menamai partikel itu proton, nama yang baru dipakai mulai tahun 1919.
Massa 1 elektron = 9,11 × 10–28 gram
Massa 1 proton = 1.837 × 9,11 × 10–28 gram = 1,673 × 10–24 gram

Dari pengamatan mereka, didapatkan fakta bahwa partikel α yang ditembakkan pada lempeng logam emas yang tipis, sebagian besar diteruskan, dan ada sebagian kecil yang dibelokan bahkan ada juga beberapa di antaranya yang dipantulkan. Hal tersebut sangat mengejutkan bagi Rutherford. Penemuan ini menyebabkan gugurnya teori atom Thomson. Partikel α yang terpantul tersebut diperkirakan telah menabrak sesuatu yang padat di dalam atom. Dengan demikian atom tersebut tidak bersifat homogen seperti digambarkan oleh Thomson. Bahkan menurut pengamatan Marsden, diperoleh fakta bahwa satu di antara 20.000 partikel α akan membelok dengan sudut 90o bahkan lebih.
Berdasarkan gejala-gejala tersebut, diperoleh beberapa kesimpulan antara lain:
  1. Atom bukan merupakan bola pejal, karena hampir semua partikel alfa (α) diteruskan. Berarti, sebagian besar volume atom merupakan ruang kosong.
  2. Partikel yang mengalami pembelokan ialah partikel α yang mendekati inti atom. Hal tersebut disebabkan keduanya bermuatan positif.
  3. Partikel yang dipantulkan ialah partikel α yang tepat menabrak inti atom.
Berdasarkan fakta-fakta yang didapatkan dari percobaan tersebut, Rutherford mengusulkan model atomnya yang menyatakan bahwa atom terdiri atas inti atom yang sangat kecil dan bermuatan positif yang dikelilingi oleh elektron yang bermuatan negatif. Jumlah proton dalam inti sama dengan jumlah elektron ynag mengelilingi inti, sehingga atom bersifat netral. Rutherford juga menduga bahwa di dalam inti atom terdapat partikel netral yang berfungsi untuk mengikat partikel-partikel positif agar tidak saling menolak. Dari percobaan tersebut, Rutherford dapat memperkirakan jari-jari atom kira-kira 10–8 cm dan jari-jari inti kira-kira 10–13 cm.
INTI ATOM
Setelah penemuan proton dan elektron, Ernest Rutherford melakukan penelitian penembakan lempeng tipis emas. Jika atom terdiri dari partikel yang bermuatan positif dan negatif maka sinar alfa yang ditembakkan seharusnya tidak ada yang diteruskan atau menembus lempeng sehingga muncullah istilah inti atom. Ernest Rutherford dibantu oleh Hans Geiger dan Ernest Marsden (1911) menemukan konsep inti atom didukung oleh penemuan sinar X oleh WC. Rontgen (1895) dan penemuan zat radioaktif (1896). Percobaan Rutherford dapat digambarkan sebagai berikut.


Percobaan Rutherford, hamburan sinar alfa oleh lempeng emas.

Hasil percobaan ini membuat Rutherford menyatakan hipotesisnya bahwa atom tersusun dari inti atom yang bermuatan positif dan dikelilingi elektron yang bermuatan negatif, sehingga atom bersifat netral. Massa inti atom tidak seimbang dengan massa proton yang ada dalam inti atom, sehingga dapat diprediksi bahwa ada partikel lain dalam inti atom.

NEUTRON
Setelah para ilmuwan mempercayai adanya elektron dan proton dalam atom, maka timbul masalah baru, yaitu jika hampir semua massa atom terhimpun pada inti (sebab massa elektron sangat kecil dan dapat diabaikan), ternyata jumlah proton dalam inti belum mencukupi untuk sesuai dengan massa atom. Jadi, dalam inti pasti ada partikel lain yang menemani proton-proton.

Prediksi dari Rutherford memacu W. Bothe dan H. Becker (1930) melakukan eksperimen penembakan partikel alfa pada inti atom berilium (Be) dan dihasilkan radiasi partikel berdaya tembus tinggi. Eksperimen ini dilanjutkan oleh James Chadwick (1932). Ternyata partikel yang menimbulkan radiasi berdaya tembus tinggi itu bersifat netral atau tidak bermuatan dan massanya hampir sama dengan proton. Massa sebutir neutron adalah 1,675 × 10–24 gram. Partikel ini disebut neutron dan dilambangkan dengan 10n .







Tidak ada komentar:

Posting Komentar